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Abstract
Objective: Risk assessment tools typically used in congenital heart surgery (CHS) assume that various possible risk factors
interact in a linear and additive fashion, an assumption that may not reflect reality. Using artificial intelligence techniques, we
sought to develop nonlinear models for predicting outcomes in CHS. Methods: We built machine learning (ML) models to
predict mortality, postoperative mechanical ventilatory support time (MVST), and hospital length of stay (LOS) for patients who
underwent CHS, based on data of more than 235,000 patients and 295,000 operations provided by the European Congenital
Heart Surgeons Association Congenital Database. We used optimal classification trees (OCTs) methodology for its interpret-
ability and accuracy, and compared to logistic regression and state-of-the-art ML methods (Random Forests, Gradient Boosting),
reporting their area under the curve (AUC or c-statistic) for both training and testing data sets. Results: Optimal classification
trees achieve outstanding performance across all three models (mortality AUC¼ 0.86, prolonged MVST AUC¼ 0.85, prolonged
LOS AUC ¼ 0.82), while being intuitively interpretable. The most significant predictors of mortality are procedure, age, and
weight, followed by days since previous admission and any general preoperative patient risk factors. Conclusions: The nonlinear
ML-based models of OCTs are intuitively interpretable and provide superior predictive power. The associated risk calculator
allows easy, accurate, and understandable estimation of individual patient risks, in the theoretical framework of the average
performance of all centers represented in the database. This methodology has the potential to facilitate decision-making and
resource optimization in CHS, enabling total quality management and precise benchmarking initiatives.

Keywords
artificial intelligence, congenital heart surgery, outcomes, statistics-risk analysis/modeling, statistics-survival analysis

Submitted October 07, 2020; Accepted March 09, 2021.

Introduction

Despite great progress achieved in the surgical management

congenital heart disease (CHD), there is still considerable asso-

ciated risk of death and complications, nonuniformly distribu-

ted across specific conditions and treatments. Complications

may lead to prolonged length of postoperative mechanical ven-

tilatory support time (MVST) and overall hospital length of

stay (LOS). In the context of efforts to promote quality

improvements in congenital heart surgery (CHS), large data-

bases of such operations have been developed, along with

methodologies seeking to establish benchmarks for surgical

results, and to devise risk models for predicting important out-

come parameters.1-18 However, methodologies used typically

assume that various possible risk factors interact in a linear

and additive fashion, an erroneous assumption. Using artificial
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Abbreviations

AI artificial intelligence
AUC area under the curve (or c-statistic)
CHD congenital heart disease
CHS congenital heart surgery
CPB cardiopulmonary bypass
EACTS European Association for Cardiothoracic Surgery
ECDB European Congenital Heart Surgeons Association

Congenital Database
ECHSA European Congenital Heart Surgeons Association
GPRF general preoperative risk factor
LOS length of hospital stay
ML machine learning
MVST mechanical ventilatory support time
OCT optimal classification trees
STS-
CHSD

Society of Thoracic Surgeons Congenital Heart
Surgery Database

intelligence (AI) techniques, we developed nonlinear models

devoid of any assumptions regarding possible variable interac-

tions, aiming to predict outcomes after CHS.

Methods

Data

The data, provided by the European Congenital Heart Surgeons

Association (ECHSA) Congenital Database (ECDB; https://

echsacongenitaldb.org) after study review and approval by the

ECDB Committee regarding compliance with all ECHSA ethi-

cal and patient data protection policies, comprise fully anon-

ymized information regarding patients with CHD who have

undergone surgery in participating hospitals from Europe and

around the world. The full spectrum of pediatric acquired and

congenital, and adult congenital cardiothoracic operations is

represented in the database. Exclusion and inclusion criteria

used to select the data cohort of 221,335 procedures analyzed,

covering admissions from January 1, 2000, to September 30,

2019, are shown in supplemental Table S1-A, and relevant

summary descriptive statistics in Tables S1-B and S1C.

Machine Learning Methodology

In the quest to achieve improved patient outcomes after CHS, it

is important to be able to make accurate predictions of the risk

of patient-specific adverse outcomes such as mortality, MVST

intensive care unit (ICU), and LOS. Furthermore, it is impor-

tant to be able to understand the predictive model’s decision

process, that is, the model needs to be logically interpretable

and intuitively understandable. Traditionally used linear mod-

els (eg, logistic regression) do not capture nonlinear effects of

risk-factor interplay and are accordingly limited in this regard.

On the other hand, “black box” machine learning (ML)-based

models can be very accurate but are complex and not intui-

tively understandable. However, in medicine, it is crucial that

prediction models be transparent and understandable by clin-

icians. Accordingly, we decided to use ML methods providing

interpretability, ranging from population level to individual

level, therefore limiting the use of “black box” approaches.

Methods providing individual-level interpretability allow under-

standing of which variables are important for a particular patient,

as opposed to other variables (eg, body weight), which may be

significant for the population but may indeed be unimportant for

an individual. We used a recent breakthrough in ML methodol-

ogy, the optimal classification trees (OCTs), which can capture

nonlinear variable interactions while providing individual-level

interpretability.19,20 For comparison, we also used the following

ML methodologies: logistic regression, random forests, and gra-

dient boosting. Logistic regression, widely used in medical sta-

tistics and a classic example of linear models, is simple to

understand. Random forests and gradient boosting are state of

the art in performance but are considered “black box” methods,

as they do not provide individual-level interpretability.

The entire data set was analyzed for estimating mortality

risk and surgical survivors for MVST and LOS. For each of the

three models built (mortality, MVST, and LOS), only the pre-

operatively known patient variables listed in Table 1 are used,

with more detailed information provided in Table S2. The data

were split into a training set (procedures prior to January 1,

2016, N ¼ 175,239), used to train the ML model, and a test set

(procedures on or after January 1, 2016, N ¼ 46,096), that is,

data hidden from the model, in order to test the model’s per-

formance on previously “unseen” data. Compared with training

data, the test data set describes “future” operations.

The training set was further split (using stratified sampling,

ensuring a similar proportion of survivors and nonsurvivors in

each subset) to produce a separate validation set, the role of

which was to tune algorithm hyperparameters: We select a set

of hyperparameters (eg, for OCT models, tree depth, or the

minimum number of patients in each leaf), a classification tree

was built using training data, and then those hyperparameter

values which perform best in the validation set were chosen.

The ML predictive task consists of a binary classification

problem aiming to predict one of two possible outcomes for

mortality, MVST, and LOS:

Table 1. The Preoperatively Known Variables (Potential Risk
Factors) Analyzed.

Variable
Age
Weight
Gender
History of any prior cardiac procedure(s)
Days since previous admission, if any
Number of preoperative diagnoses
Antenatal diagnosis known
Any noncardiac abnormalities present
Any general preoperative risk factor present
Case category (CPB vs non-CPB)
Number of concomitant procedures performed
Year of procedure
Procedure

Abbreviation: CPB, cardiopulmonary bypass.
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For Mortality, the binary outcome is whether the patient

died in the hospital (or within 30 days) after the pro-

cedure or not.

For prolonged Postoperative MVST defined as Time of

extubation in ICU (or, time of last extubation in cases

of reintubation(s))—Time of end of surgery, the binary

classification problem was to predict whether the dura-

tion of MVST was prolonged, selected as being above

or below the 85th percentile MSVT (94.5 hours).

For prolonged LOS, defined as date of discharge–date of

surgery, the binary problem was to predict whether the

duration of hospitalization is above or below the

selected threshold of 85th percentile (19 days).

Results

Average mortality is 5.1% in the training, 3.0% in the test, and

4.7% in the overall data sets analyzed. Univariate associations

between preoperative variables and mortality in the training set

are shown in Table S3. By definition, the average rate for

prolonged LOS and prolonged MVST is 15%. For the three

models built, the area under the receiver operating character-

istic curve (AUC) for the outcomes of mortality, LOS, and

MVST, using the different methodologies, is reported in

Table 2. Area under the curve was chosen as a metric particu-

larly useful to evaluate binary classification tasks, especially

for highly unbalanced data sets, like the one analyzed. Calibra-

tion plots for the OCT models in training and testing data are

shown in supplemental Figure S1.

The importance of each preoperative variable in predicting

outcome was also computed and listed in Table S4. The most

important risk factors are procedure and patient’s age and

weight. Procedure alone accounts for >50% of the features’

contribution. A short time (<12 days) since the last (of any)

prior operation and the presence of any general preoperative

risk factors (GPRFs) also contribute significantly to the like-

lihood of mortality. The remaining factors have marginal sig-

nificance, with each contributing less than 2% toward the odds

of mortality.

The mortality risk model presents itself clearly as a decision

tree, shown for the outcome of mortality in Figure 1A. It is

possible to follow this tree along its branches to the lowest level

terminal leaves, which identify 23 distinct patient cohorts and

their respective predicted mortalities. A summary description

of an example cohort is presented in Table S5. At each branch-

ing step along the decision tree, the combination of factors

involved and the logic behind each step is fully transparent.

Thus, given the preoperative features of an individual patient,

one can read the tree along its branching points and arrive at the

predicted risk, as shown in Figure 1B. By direct analogy, the

decision trees for predicting MVST and LOS (shown in Figures

S3 and S4) are also fully interpretable. Therefore, it becomes

clear why our OCT methodology is fully interpretable at the

individual patient level.

Congenital Heart Surgery Adverse Outcome
Prediction Tool

The OCT-derived risk models were used to produce a clinician-

friendly software tool that aims to permit easy estimation of an

individual patient’s risk for a given procedure in the theoretical

framework of the average performance of all centers repre-

sented in the database. One can input preoperatively available

patient information on the smartphone app (Figure S2), leading

to the immediate calculation of risk estimates (mortality, pro-

longed MVST, or prolonged LOS) for the specific patient and

the proposed procedure.

Comment

The ECHSA ECDB was established in 1995, originally as the

European Congenital Heart Defects Database and renamed as

the European Association for Cardiothoracic Surgery (EACTS)

Congenital Database in September 1999, acquiring its current

final name in 2015. The ECDB collects data from participating

centers regarding pediatric and adult congenital cardiac oper-

ations, aiming to assess results for scientific study and to pro-

vide tools for individual programs’ own quality improvement

efforts. The ECDB has collaborated closely with the Society of

Thoracic Surgeons (STS) Congenital Heart Surgery Database

(CHSD), developing common nomenclature of cardiac defects

and identical data fields, enabling sharing data in joint research

efforts.5 European Congenital Heart Surgeons Association

Congenital Database research is documented in multiple pub-

lications listed on its website: https://www.echsacongenitaldb

.org/publications/.

Table 2. Comparative Performance of Different Methods of Building Risk Estimation Models for Mortality, Prolonged MVST, and
Prolonged LOS.

Method

AUC for mortality AUC for prolonged MVST AUC for prolonged LOS

Training (%) Testing (%) Training (%) Testing (%) Training (%) Testing (%)

Logistic regression 75.3 77.2 80.9 81.3 71.5 72.8
Optimal classification trees 85.5 86.2 85.6 84.8 80.4 81.0
Random forest 85.9 87.3 85.2 85.4 80.1 82.1
Gradient boosting 85.6 87.4 85.5 85.6 80.4 82.0

Abbreviations: AUC, area under the curve; LOS, length of hospital stay; MVST, mechanical ventilatory support time.
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Figure 1. A, Mortality decision tree based on the optimal classification tree (OCT) algorithm. Greater intensity of the color in each leaf depicts
increased mortality of the cohort. At the root level, the overall mortality rate for 175,239 procedures analyzed in the training data set is 5.1% (note
that since the rate is limited to training data prior to 2016, the rate is higher than the overall database average of 4.7%, and of 3.0% in the test data
set of 3.0%). The first branch split occurs based on the presence of any general preoperative risk factors (GPRF). If we follow the right branch (no
GPRF), we see that the next branching is based on days since previous admission, age, procedure, and weight. If we follow the left branch again,
depending on the procedure and age, the mortality can range from 2.8% to 40.2%. It is therefore possible to follow the tree along its branches to the
lowest level terminal leaves, which identify 23 patient cohorts and their respective predicted mortalities. At each branching step along the decision
tree, the combination of the factors involved and the logic behind each step is fully transparent. Thus, given the preoperative features of an individual
patient, one can read the tree along its branching points and arrive at the predicted risk, as shown in B. (B) The prediction of mortality risk (16.2%)
for a patient with diagnosis transposition of the great arteries with VSD, weight 3 kg, preoperative ventilation and resolved shock at the time of
surgery, age 2 weeks, undergoing an arterial switch operation with VSD closure, is highlighted on the decision tree.
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It is established that assessment of surgical results must

take into account, on one side, the inherent complexity of the

diagnosis, the individual patient’s characteristics, the dis-

ease’s severity, and the nature of the procedure, and on the

other side, the performance of the surgeon, team, and institu-

tion. In this article, we have focused on the impact of various

features of the underlying pathologies and preoperative

patient characteristics recorded in the ECDB. Important out-

comes to study include not only mortality but also the dura-

tion of stay in the ICU, on ventilator support (MVST), or in

the hospital (LOS). Other quality metrics are also important,

as well as costs, which, in turn, are influenced by complica-

tions, MVST, and LOS. Such additional outcome metrics

along with relevant institutional factors are the focus of fur-

ther studies by our group.

Major efforts to adjust for “case-mix,” that is, for varia-

bility in the inherent risk of various procedures, and to

account for effects of variation in patient characteristics, have

evolved from initial attempts based on expert consensus

(RACHS-11,2 and Aristotle3,4 methods), to those empirically

derived, based on outcome measures provided by real data5-18

(STS-EACTS Mortality Score and Categories, so-called

STAT Score and Categories, and STS Morbidity Score and

Categories, and use of accurate risk prediction models, such

as the STS-CHSD Mortality Risk Model14 and the UK

PRAiS2 Model).18 Still, it is recognized that patient factors

typically used in these models only explain a small proportion

of variation in mortality.16

However, the aforementioned analytical methods, although

achieving very high predictive accuracy, are flawed in assum-

ing that various possible risk factors for adverse outcome inter-

act in a linear and additive fashion, an assumption which

frequently does not reflect reality. For example, although pre-

maturity and low birth weight are intuitively understood risk

factors for CHS, their influence is practically absent in older

patients and for most procedures. In recognition of the exis-

tence of potential nonlinear interactions of risk factors, the

STS-CHSD Mortality Risk Model has included several vari-

ables and adjustments, such as condition/age interactions and

condition/age/procedure interactions. For example, the effect

of Down syndrome was estimated based on age and procedure

subgroups, including atrioventricular canal repair and single

ventricle palliation.14 However, capturing the importance of

such interactions required prior manual creation of possible

candidates of interactions and use of a Bayesian model to iden-

tify groups as similar as possible.

Furthermore, published methods have not provided physi-

cians with a practical tool to predict mortality or morbidity of a

given patient with CHD considered for surgery, given his pre-

operative risk profile.

To circumvent such limitations, we have used AI tech-

niques, which some of us have previously used in other medical

applications,19-20 seeking to develop (1) nonlinear models, free

from any assumptions regarding the importance and interplay

of preoperative variables or their combinations, aiming to pre-

dict outcome after CHS and (2), a user-friendly tool enabling

clinicians to estimate outcome risks by inputting a specific

patient’s characteristics. Thus, we sought to develop models

to predict mortality after CHS, and for survivors, to estimate

the risk of prolonged MVST and LOS.

Our results demonstrated that OCTs consistently outper-

formed the simpler linear regression and had similar predictive

accuracy (within 1.5%) as the more complex ML models, how-

ever, with the significant advantage over the latter of ensuring

full interpretability. It is, in fact, a major advantage of OCT

methodology that the prediction model generated, presenting

itself as a decision tree, is fully transparent. Furthermore, in

addition to enabling a clear understanding of how any predic-

tion is reached for an individual patient, the methodology auto-

matically reveals patient cohorts of similar risk. These model

features are evident by studying the OCT presented in Figure 1.

It is easy to see the influence of each feature (“risk factor”) by

following the tree to each successively deeper level. Given the

preoperative characteristics of a patient, one can follow the

decision “path” along the branches of the tree, understanding

at each step the sequential decisions taken, and also compre-

hend the characteristics of resulting patient cohorts with similar

risk, as revealed by the tree’s terminal leaves. The ability to

understand the decisions of the OCT algorithm is in advanta-

geous contrast with findings of various studies in similar set-

tings showing the use of “black-box” deep learning

solutions,21-27 which, despite higher performance indicators,

have architectural inner workings which are obscure not just

for clinicians, but for AI experts as well. Such black-box meth-

ods cannot provide interpretable explanations of “why” a given

patient is assigned a certain outcome risk. The interpretability

of our OCT methodology is extremely important since physi-

cians, not typically versed in the complex AI and ML algo-

rithms, need to understand how mathematical models achieve

their predictions if they are to trust their results.

The risk factors identified by this analysis are consistent

with clinical experience: procedure, age, and weight are the

most powerful predictors of aggregate mortality, with signifi-

cant contributions from the occurrence of a very recent other

cardiac operation (<12 days, suggesting an unplanned early

procedure possibly addressing some complication), and the

presence of any of the various GPRFs listed in Table S2 (such

as mechanical circulatory or ventilatory support). Of note, in

our model, we have not used the factor of preoperative diag-

nosis leading to operation because it neither increased model

accuracy nor did it result in clinically more useful decision

trees.

Interestingly, the contribution to the models’ predicting

power of other preoperative variables was very small (eg, case

category, cardiopulmonary bypass [CPB] vs non-CPB) or even

absent (eg, year of surgery), despite the univariate association

of these variables with the outcome (mortality), as shown in

Table S3. In this nonlinear analytic system, the importance of

such variables is overshadowed by the more powerful predic-

tors listed above, especially when considering the effect of a

variable such as year of surgery on procedures with a small
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number of yearly observations, which precludes statistical

significance.

Several additional points deserve emphasis: Because of

well-known progress achieved over the last several years in

CHS, particularly with regard to complex high-risk lesions,13

we expect the model to overestimate mortality. When we reca-

librate the model with a more recent validation set (2016-2017)

and show results with validation and testing (2018-2019) cali-

bration plots (Figure 1S), the model still overestimates risks for

higher risk procedures, but, its predictions stabilize. In addi-

tion, our models still provide correct risk estimation in terms of

order as reflected by high AUCs. In other words, AUC is a

measure of ordering, not of the absolute magnitude of risk.

Thus, although the overall risk in the “new data” is lower than

predicted for higher risk procedures, AUC is still high because

the order is correct. Clearly, to keep the predictive capacity of

the model always current, our plan is to recalculate the model

periodically, as new data accumulate.

We emphasize that our model predictions result mathema-

tically from the given data set which is inclusive of data sub-

mitted from surgical practices of all ECDB participants,

comprising both European and (for 1/3 of data) non-

European centers. We did not limit our analysis to European

centers, which might have resulted in greater data uniformity

and model predictive accuracy, aiming to provide self-

assessment tools applicable to all ECDB participating centers.

It is possible that specific predictions of the model regarding

particular patients and procedures may well be different if a

different data set were analyzed, for example, our European

data subset, or the STS-CHSD data reflecting North American

practices. Although important lessons could be drawn from

such possible future comparative studies, the focus of this study

is to establish the new ML methodology of OCTs, not to derive

specific clinical lessons from analysis of CHS data for any

particular clinical application. In other words, we acknowledge

that the emphasis of our current work is to demonstrate the

utility of this ML methodology in the evaluation of CHS data

in the framework of the total (geographically and temporally

heterogeneous) experience recorded in the ECDB. Accord-

ingly, precisely because of this heterogeneity, our presented

model is not to be considered “a final product” to be used for

assessment by all CHS centers, nor by all ECHSA or European

centers. Such applications will obviously require recalculation

of the models using the appropriate region-specific and con-

temporaneous homogeneous data sets.

We also acknowledged that the same data fields are

recorded for all patients in the ECDB, it being a registry aim-

ing to record all CHS activity in participating centers. There-

fore, the ECDB has not captured all features, which may be

important for all pathologies, procedures, and their innumer-

able combinations. Accordingly, efforts are underway to

develop additional data fields to capture important diagnosis

and procedure-specific preoperative variables, such as ana-

tomic information of coronary arteries in Transposition of the

Great Arteries (TGA) or Tetralogy of Fallot (TOF), and so on.

Future availability of such granular data may well further

increase the predictive power of our methodology.

We note that all predictions are made on the procedure

instead of on the patient level. Therefore, the cumulative esti-

mated risk for a patient who may undergo multiple procedures

would be higher than the individual procedure prediction.

We also note that surgical outcomes do not only depend on

the disease, procedure, and patient-specific factors but also on

other variables relating to the availability, quality, and organi-

zation of necessary health care resources, determined, for

example, by geography, center, program size, and so on. The

effects of such factors external to the patient were not

addressed in this article, but are being analyzed in our continu-

ing research, using the presented methodology, and will be

presented in subsequent reports. Consequently, although our

current risk calculator provides a user-friendly tool to predict

risks of various procedures taking into account individual

patient characteristics, we emphasize that such outcome pre-

dictions are based on cumulative data of all participating cen-

ters and do not reflect any individual center experience and

performance level. Accordingly, our current version of the cal-

culator is to be considered as a pilot tool for theoretical general

risk prediction and is not intended to advise patients in the

context of care provided by individual centers.

Any real-world, real-time model and application used in

clinical practice to predict CHS risks requires the use of fairly

contemporaneous data to develop the model. Although the

models reported in this article demonstrate the potential of

ML in the analysis of CHS outcomes, they are not yet ready

for actual clinical application in a bedside calculator designed

to predict CHS risks in specific centers. However, we hope that

our ongoing evolving research, focusing on deep analysis of

individual center performance, will allow center-specific pre-

dictions. Such more refined models to be developed, based on

more homogeneous data subsets and taking into account insti-

tutional and possibly surgeon factors, may form the basis of

future versions of the calculator which could have more clinical

relevance to specific patient counseling.

Limitations

This methodology depends on a large number of good quality

data, as are those in the ECDB. Although only a minority of

data (approximately 14%) in the ECDB has been subjected to

our on-site data verification process (in which independent

database auditors visit volunteering centers and perform, on-

site, detailed verification of 100% of submitted data fields and

for 100% of the submitted patients), the outcomes of these

verification analyses are regularly updated and published on

the ECDB website (https://echsacongenitaldb.org/data_verifi

cation_results/), the results to date consistently demonstrating

no statistically significant differences between the verified and

unverified subsets.28 Another limitation is that our analyses

have involved a large variety of diagnoses, procedures, and

their combinations, with major variation in their frequencies,

ranging from relatively common to extremely rare. This

458 World Journal for Pediatric and Congenital Heart Surgery 12(4)

https://echsacongenitaldb.org/data_verification_results/
https://echsacongenitaldb.org/data_verification_results/


variability precludes having large numbers of data for rare

conditions, for which many centers and surgeons may have

little or no experience. Accordingly, the terminal leaves of the

decision trees indicate frequently heterogeneous patient

cohorts of similar risk. Finally, due to the large number of

heterogeneous procedures with few observations, we chose not

to use procedure-specific but rather cumulative 85th percentile

MSVT and LOS. Although this could introduce bias against

more complex procedures, auxiliary analyses using procedure-

specific MSVT and LOS demonstrated similar model perfor-

mance for various procedure types (Table S6). Such limitations

originating in data heterogeneity are also addressed by our

ongoing research analyzing the more common and most clini-

cally important operations, chosen to be, for comparative pur-

poses, the same ten “benchmark operation groups” as

introduced by the STS-CHSD analyses.5 Finally and most

importantly, we acknowledge that the wide temporal and geo-

graphic heterogeneity of the data on which the models were

trained, which likely reflect widely varying patterns of practice

and outcomes, precludes the specific application of these mod-

els to any one specific regional practice (eg, Europe or North

America). However, the same methodology can be easily

applied to recalculate the models, for example, using European

only data for application in Europe.

Conclusions

In summary, in seeking improved tools for risk prediction in

CHS via analysis of the large data set in the ECHSA ECDB, the

presented AI and ML-based models of OCTs, which are devoid

of assumptions such as risk factor linearity, provide predictive

power superior to traditional logistic regression and other com-

petitive ML models, and, due to their intrinsic power, may need

fewer variables than traditional methods to achieve accurate

statistically significant predictions. Our methods operate

entirely objectively, yet their decision-making process is easily

understandable at each step. In other words, our approach has

the added advantage of full intuitive interpretability of the

method and its results, and its predictive models can be easily

updated as new data accumulate. Our current risk calculator,

based on these models, allows easy estimation of risks for

individual patients given different preoperative scenarios, in

the theoretical framework of the average performance of all

centers represented in the Database.

Our work represents an initial evaluation of powerful ML

tools and their application in the estimation of adverse outcome

risks after CHS in the context of the challenges and limitations

presented by the diverse spectrum of diagnoses, patients, pro-

cedures, and important limitations noted, including heteroge-

neity of patients, procedures, practices, and outcomes in a great

variety of ECDB centers across multiple geographic regions, as

well as necessary use of “historical” and limited data in devel-

oping predictive algorithms. Therefore, we consider the

strength of this study to rest more on its focus and demonstra-

tion of the potential of the methodology presented, rather than

on the actual results and clinical conclusions generated with

the current “training” or development data set.

In short, our article demonstrates the potential of ML in the

analysis of pediatric and congenital cardiac surgical outcomes.

The approach described represents the initial step in an iterative

process that will certainly evolve over time. Our methodology,

which we plan to develop further to take into account hospital-

derived features, has the potential to contribute significantly to

quality control initiatives in CHS, opening the door to more

precise and transparent benchmarking of outcomes. The cur-

rent model reported in this article is a preliminary model; this

current model is a scientific analysis that is not ready for clin-

ical application. This current model is a general prototype

developed based on heterogeneous sources of data, including

both geographic heterogeneity and temporal heterogeneity. In

order for such a model to be suitable for clinical application, it

would need to be recalculated using data from a contemporary

interval of time and a geographically proximate source (ie,

using only European data rather than global data if the model

is to be used clinically in Europe).
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Comprehensive Complexity score predicts mortality and morbid-

ity after congenital heart surgery. Ann Thorac Surg. 2011;91(4):

1214-1221.

5. O’Brien SM, Clarke DR, Jacobs JP, et al. An empirically based

tool for analyzing mortality associated with congenital heart sur-

gery. J Thorac Cardiovasc Surg. 2009;138(5): 1139-1153.

6. Jacobs JP, O’Brien SM, Pasquali SK, et al. Variation in outcomes

for risk-stratified pediatric cardiac surgical operations: an analysis

of the STS congenital heart surgery database. Ann Thorac Surg.

2012;94(2): 564-572.

7. Jacobs JP, Jacobs ML, Maruszewski B, et al. Initial application in

the EACTS and STS congenital heart surgery databases of an

empirically derived methodology of complexity adjustment to

evaluate surgical case mix and results. Eur J Cardiothorac Surg.

2012;42(5): 775-780.

8. Jacobs JP, O’Brien SM, Pasquali SK, et al. Variation in outcomes

for benchmark operations: an analysis of the Society of Thoracic

Surgeons Congenital Heart Surgery Database. Ann Thorac Surg.

2011;92(6): 2184-2192.

9. Jacobs JP, O’Brien SM, Pasquali SK, et al. The importance of

patient-specific preoperative factors: an analysis of the Society of

Thoracic Surgeons Congenital Heart Surgery Database. Ann

Thorac Surg. 2014;98(5): 1653-1659.

10. O’Brien SM, Jacobs JP, Pasquali SK, et al. The Society of Thor-

acic Surgeons Congenital Heart Surgery Database mortality risk

model: part 1—statistical methodology. Ann Thorac Surg. 2015;

100(3): 1054-1062.

11. Jacobs JP, O’Brien SM, Pasquali SK, et al. The society of Thor-

acic Surgeons Congenital Heart Surgery Database mortality risk

model: part 2—clinical application. Ann Thorac Surg. 2015;

100(3): 1063-1070.

12. Pasquali SK, Jacobs ML, O’Brien SM, et al. Impact of patient

characteristics on hospital-level outcomes assessment in congeni-

tal heart surgery. Ann Thorac Surg. 2015;100(3): 1071-1077.

13. Jacobs JP, He X, Mayer JE Jr, et al. Mortality trends in pediatric

and congenital heart surgery: an analysis of the Society of Thor-

acic Surgeons Congenital Heart Surgery Database. Ann Thorac

Surg. 2016;102(4): 1345-1352.

14. Jacobs JP, O’Brien SM, Hill KD, et al. Refining the Society of

Thoracic Surgeons Congenital Heart Surgery Database mortality

risk model with enhanced risk adjustment for chromosomal

abnormalities, syndromes, and noncardiac congenital anatomic

abnormalities. Ann Thorac Surg. 2019;108(2): 558-566.

15. Jacobs JP, Mayer JE Jr, Pasquali SK, et al. The Society of Thor-

acic Surgeons Congenital Heart Surgery Database: 2019 update

on outcomes and quality. Ann Thorac Surg. 2019;107(3):

691-704.

16. Pasquali SK, Gaies M, Banerjee M, et al. The Quest for precision

medicine: unmeasured patient factors and mortality after conge-

nital heart surgery. Ann Thorac Surg. 2019;108(6): 1889-1894.

17. Spray TL, Gaynor WL. A word of caution in public reporting.

Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann. 2017;20:

49-55.

18. Rogers L, Brown KL, Franklin RC, et al. Improving risk adjust-

ment for mortality after pediatric cardiac surgery: the UK PRAiS2

model. Ann Thorac Surg. 2017;104(1): 211-219.

19. Bertsimas D., Dunn J. Optimal classification trees. Mach Learn.

2017;106: 1039-1082.

20. Bertsimas D, Dunn J., Velmahos GC, Kaafarani HMA. Surgical

risk is not linear: derivation and validation of a novel, user-friendly,

and machine-learning-based predictive optimal trees in emergency

surgery risk (POTTER) calculator. Ann Surg. 2018;268(4):

574-583.

21. Jalali A, Lonsdale H, Do N, et al. Deep learning for improved

risk prediction in surgical outcomes. Sci Rep. 2020;10(1):

9289-9302.

22. Jalali A, Simpao AF, Galvez JA, Licht DJ, Nataraj C. Prediction

of periventricular leukomalacia in neonates after cardiac surgery

using machine learning algorithms. J Med Syst. 2018;42(10):

177-188.

23. Johan Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SAM,
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